
CS301 IT Solution Architecture

AY 2022/2023 Semester 1

Final Report

Team: G2T8

Github Team Name: project-2022-23t1-g2-t8

Instructors:

Dr. Ouh Eng Lieh

Team 8 Student ID

Seah Pei Ming 01405085

Darien Tan Shi Feng 01369598

Lee Shuoan 01391584

Ng Jun Hng Aloysius 01412905

Royston Lek Chun Keat 01415111

Myo Min Tun 01374353

Stakeholders
Stakeholder Stakeholder Description Permissions

Customers Customers are the bank’s end users using
the rewards platform. Customers will have
to be enrolled and have their accounts
verified via 2FA. To access the platform,
they will then need to be authenticated

● View/Update user profile
and details

Administrator Administrators have visibility over the list
of users. Admins with write and delete
permissions are able to manage user roles
and permissions to prevent any
unauthorised access to PII data

Read-only roles
● View user account

information
Write/Delete roles:
● View/Update/Delete user

roles and permissions

Banks Banks manage customers’ accounts and
their access to our services. The bank’s
backend services will need to have access
to our Authorization server’s JWKS
endpoint to retrieve the public key

● GET public key from
authorisation server

Key Use Cases
Use Case Title - Enrollment

Use case ID 1

Description Customers are required to register an account in Ascenda and the user
must have an existing account with Ascenda’s partner to access the
rewards platform. In addition, 2FA will be used to verify account
ownership

Actors Customers, Banks

Main Flow of
events

1. Users register an account in Ascenda’s website by keying in their
particulars: First Name, Last Name, Email, Birthdate, and Password

2. Ascenda’s website will validate if the user has an account with the
partner in the database by cross checking the database with user’s
input

3. Ascenda will verify ownership of user’s account through 2FA

Alternative
Flow of events

1. If enrolment fails due to failed validation, the client will throw an
error

2. If 2FA verification fails, the client will throw an error

Pre-conditions User accounts from Ascenda’s partners from the daily sync which will

be seeded into AWS Relational Database (RDS)

Post-conditions Customers will be able to log into their accounts subsequently and will
not be required to enrol again

Use Case Title - User Authentication

Use case ID 2

Description Customers have a choice to either log in to Ascenda’s platform through
hosted login or Bank SSO. It is important that they are authenticated
before they can access any of Ascenda’s services

Actors Customers, Banks

Main Flow of
events

User logs in via hosted login
1. User clicks on login
2. Client send authorization code request
3. Authorization server redirects user to login prompt
4. User authenticate and consent
5. Authorization server gives authorization code
6. Client sends authorization code along with client secret and id to

authorization server
7. Authorization server returns access token which is a signed and

encrypted JWT and a refresh token

User logs in via Bank SSO
1. User clicks on bank SSO to login
2. Redirect user to bank log in
3. Enter user credentials and Bank SSO validates
4. Authenticate and consent
5. Bank SSO grants access
6. Authorization app makes POST request to Bank SSO for access

token
7. Bank SSO creates access token
8. Authorization app checks if access token is valid and has not

expired
9. GET request to Bank SSO to retrieve user info
10. Bank SSO returns user info
11. User views user profile

Alternative
Flow of events

1. If log in details are invalid (Invalid email or wrong password), an
error will be shown to the user

2. If user fails to consent, frontend client will redirect back to login

Pre-conditions User needs to be enrolled

Post-conditions For hosted login, if refresh token does not expire, user will be
automatically logged in to their user profile page as refresh token will

help issue a new access token when the current access token expires

Use Case Title - View Access Control Management Page

Use case ID 3

Description Due to the differences in access rights, it is important that the platform
will have different views according to the permission rights of the
admin logging in. Upon logging in, admins with read-only roles will not
be able to perform write and delete operations while admins with these
privileges will be allowed to

Actors Administrators

Main Flow of
events

Read-only role
1. User logins via hosted login or Bank SSO
2. Authorization server authenticates user login and returns client with

an access token
3. Client checks access token role and if role is an admin, client sends

GET request for users from bank’s backend service
4. Bank’s backend service requests public key from the authorization

server’s JWKS endpoint
5. Access token is verified with the public key
6. Users are returned to the client and admin control panel is display

Write / Delete role
7. Admin edits user and submits
8. Client sends GET request to the bank’s backend service to update

user
9. Bank’s backend service requests public key from the authorization

server’s JWKS endpoint
10. Access token is verified with the public key
11. Bank’s backend service updates the user
12. Update success is returned to the client and success message is then

displayed to the user

Alternative
Flow of events

1. When user or administrator keys in wrong user credentials,
frontend will throw an error

Pre-conditions User needs to be enrolled and successfully authenticated

Post-conditions View of the control panel is dependent on the privileges of the user

Proposed Budgets
Production Budget

Hardware / Description Cost (monthly)

Software /
Service

AWS S3 We will be using AWS S3 to host the
static frontend web page, allowing low
cost, high availability and easily to be
managed.

First 50TB/Month -
$0.023 per GB
Next 450 TB / Month -
$0.022 per GB
Over 500 TB / Month -
$0.021 per GB

Assume usage of typical
static website hosted in
S3 in general by AWS
users to be $3
(Maximum)
Total cost = $3

Compute - AWS
EC2 Instances for
web &
authorization
server with Auto
Scaling

We will be using 2 EC2 instances as
authorization servers per AZ. These
instances will be under an Auto Scaling
group with a minimum capacity of 2 as
there are 2 availability zones. Since
customers/banks may be using the
services at any time of the services at any
time of the day, it’s crucial to have a
server up all the time

2 x t4g.small, 2 Vepu,
2GiB, NURI
Total cost = $26.76
(AWS pricing calculator)

Application Load
Balancer

To ensure high availability, an application
load balancer is used to distribute traffic
across multiple EC2 instances, in
multiple AZs

Assuming 720
Application Load
Balancer-hours
Total cost = $52.79

Database - RDS
Cluster

RDS is used to store our user data for
hosted login as the attributes will not
change and hence vertical scaling is
preferred as to accommodate store more
users using in the future

Assuming that the
average amount of data in
one month is GB

AZ, 3 RDS t4g.small
instance 10GB General
Purpose SSD storage
33.25 per GB-month
Total cost = $332.50

AWS Secrets
Manager and
AWS Key
Management
Service (KMS)

AWS Secrets Manager stores credentials
and has integration with AWS KMS to
store encryption keys. AWS Secrets
manager stores secrets, and transparently
decrypts and returns them to you in
plaintext. It's designed specially to store
application secrets, such as login
credentials, that change periodically. It

Secrets manager: $0.05
per 10,000 API calls:
$0.40 per secret

KMS: $0.03 per 10,000
requests

Considering 10 million

encrypts the value with a unique data key
which is protected by an AWS KMS key.

requests and API calls +
10 secrets: $84

API Gateway API Gateway will act as a proxy and be
responsible for routing HTTPS requests
to the backend server

Assuming 3 million
requests of 12KB with
REST API
Total cost = $18.30

AWS Private Link AWS PrivateLink provides private
connectivity between VPCs, AWS
services, and on-premises networks,
without exposing the traffic to the public
internet

Total Cost = $0.013 per
VPC endpoint per AZ
($/hour) * 4 * 720 =
$37.44

AWS WAF AWS WAF helps you protect against
common web exploits and bots that can
affect availability, compromise security,
or consume excessive resources.

1 Web ACLs per month =
$7.02 (WAF Web ACLs
cost)
1 Rules added per Web
ACL + 4 Managed Rule
Groups = 5.00 Total
billable Rules per Web
ACL
1 Web ACLs per month x
5.00 Billable Rules per
web ACL per month x
$1.40 = $7.02 (WAF
Rules cost)
1 requests per month x
1000000 multiplier for
million x 0.0000006 USD
= $0.84 (WAF Requests
cost)
$7.02 + $7.02 + $0.84 =
$14.88

Maintenance Code revision and updates 10 Man hours per month

Other Services Amazon Cloudfront, Amazon
Cloudwatch, AWS WAF, AWS ACM,
AWS IAM, Amazon Route 53, AWS SNS
(Assuming at most 1 million requests per
month)

Free

Total cost Overall costs 569.67 + 10 Man Hours

Key Architectural Decisions
Architectural Decision - Front End running on S3

ID 1

Issue There are multiple ways to deploy the frontend client for our application

Architectural
Decision

We chose to deploy our website using S3 hosted static pages instead of
using EC2 web application instances

Assumptions -

Alternatives AWS EC2 (Together with/Separate from backend)

Justification Having a frontend together with the backend is not selected due to the
tight coupling. Hosting our frontend on another EC2 is not chosen as it is
more pricey due to a wastage of resources such as compute power.

S3 being a PaaS is more easily maintainable than EC2 as it is an Iaas.
There are lesser things that we have to worry about when hosting our
frontend on S3 as AWS will manage more things than if we were to host
our frontend on EC2.

Architectural Decision - Database

ID 2

Issue There are different methods to store our data

Architectural
Decision

Using a relational database (RDS, MySQL) over a non-relational database
(DynomoDB)

Assumptions Standard bank user information data formats for each customer of a bank

Alternatives Non relational database (DynamoDB) and Database in another ec2

Justification As highly accurate and durable data is required for bank customers, it is
crucial that our database complies with ACID and hence, we selected RDS
over DynamoDB
As our data is not complex, hosting the database in another EC2 instance
is not selected due to the high maintenance costs.

Architectural Decision - Monolithic Architecture

ID 3

Issue There are several methods to develop our application

Architectural Creating our application using a monolithic architecture over

Decision microservices

Assumptions -

Alternatives Microservices architecture

Justification As the authorisation server is inherently stable and scalable sub functions,
a monolithic architecture is chosen as it reduces the complexity of
development, testing, maintenance and deployment

Architectural Decision - Authorization server running on EC2 instances

ID 4

Issue There are several methods to deploy our authorization server

Architectural
Decision

Deploying our authorization server on EC2 over AWS Lambda and ECS

Assumptions -

Alternatives AWS Lambda, ECS

Justification EC2 allows flexibility of options, allowing us to configure features to our
needs and demands when necessary. This provides long-running tasks
since instances are available for different types of requirements with
different configurations. In addition, implementation of EC2 Auto
Scaling groups can provide an error free process for scalability.

Cold startup and be an issue for AWS Lambda, causing latency, hence
using EC2 can help to provide better availability.

EC2 can function without the need of containerization, offering great
flexibility with wide-ranging OS support and hardware configurations.

Development View
Project Management
With the scale of this project and the sizable number of developers on our team, it was
especially crucial for our team to work closely together with clearly defined roles.
Members and duties

Team Member Key Responsibilities

Seah Pei Ming CI-CD and Cloud Architecture

Darien Tan Shi Feng Frontend development

Lee Shuoan Frontend development, CI-CD

Ng Jun Hng Aloysius Backend (Bank SSO) development

Royston Lek Chun Keat Backend (Hosted Login) development

Myo Min Tun Backend (Enrolment) development

SCRUM Project Management
With the scrum framework and the usage of Notion platform, we held weekly scrum meetings
to ensure that our project was on track. Doing this from the beginning was crucial such that
everyone would be updated on the various cloud services that would be used during the
development phase and for deployment on the cloud.
Continuous Integration Continuous Deployment (CICD)
For the deployment of our backend into EC2 instances, we made use of AWS CodePipeline,
with CodeBuild and CodeDeploy to automatically deploy our changes to our development
environment. For deployment of our frontend into S3, we made use of Github Actions to
automatically deploy our changes to our S3 bucket. This enabled us to rapidly deploy and test
our code for our overall system.

Note: CodeDeploy for backend not fully functional. Passes up till CodeBuild.

Learning Points
This project was certainly not without its challenges. Many concepts and principles
encompassed in the project requirements were previously unknown to us, and we had to
explore and learn alot these concepts through our research. An important part of our
development strategy was also to consolidate learning points for our growth as developers!
Here are a few brief
AAR pointers we gathered:
1. Allocate work better to distribute heavier programming work more evenly.
2. Better communication throughout the development process to catch issues early. Fail fast,
recover fast
3. Making small incremental changes to our system instead of trying to set up the entire cloud
infrastructure at once, making debugging very hard

Solution View (Maintainability)
Architecture Design

Routing configurations

VPC Network ACL

Rule
Number

Type Protocol Port Range Source
Address

Allow/Deny

100 All IPv4 traffic All All 0.0.0.0/0 Allow

* All IPv4 traffic All All 0.0.0.0/0 Deny

Application Load Balancer (Internal)

Type Protocol Source Address Destination Port

HTTPS TCP 0.0.0.0/0 443

HTTP TCP 0.0.0.0/0 80

Custom TCP TCP 10.0.0.0/16 8080

Authorization Server

Type Protocol Source Address Destination Port

HTTP TCP 10.0.0.0/16 80

Custom TCP TCP 10.0.0.0/16 8080

SSH 22 0.0.0.0/0 22

Database

Type Protocol Source Address Destination

Amazon RDS TCP 10.0.0.0/16 3306

Integration Endpoints

Source System Destination
System

Protocol Format Communication
Mode

Route 53 AWS WAF HTTPS JSON Synchronous

AWS WAF AWS
CloudFront

HTTPS JSON Synchronous

AWS
CloudFront

S3 HTTPS JSON Synchronous

S3 API Gateway HTTPS JSON Synchronous

API Gateway VPC Link HTTPS JSON Synchronous

VPC Link Application
Load Balancer

HTTPS JSON Synchronous

Application
Load Balancer

EC2 HTTP JSON Synchronous

EC2 RDS TCP/IP JSON Synchronous

Software Design Principles
Our software design principles and patterns are chosen best suited to the business needs and
requirements of the project description.

Singleton
We made use of Singleton design principles, creating one unique object of one
class(SSOService) which can be used wherever required. This promotes code reusability and
flexibility.

Don’t Repeat Yourself (DRY)
To reduce the repetition of patterns and code duplication in favour of abstractions and
avoiding redundancy, we made use of the DRY principle. This helps to divide the code into
smaller segments, thus calling it whenever it is required.

Builder
SSO feature is based on the builder design principle which helps to simplify creation of
objects, constructing the complex objects step by step. This enables us to gain better control
over the construction process, improving its security construction and also the readability of
code.

SOLID Design Principles
We adhered to SOLID design principles for object-oriented programming, having every class
and interface to be documented with well-defined responsibilities, enabling us to identify any
critical logical components.

Availability View

Node Redundanc
y

Clustering Replication

EC2
Instance
s

Horizontal
Scaling

Node Config: Active-Active
Failure Detection: Ping
Failover: Application Load Balancer

Session State Storage: Client
Sessions

Amazon
RDS

Horizontal
Scaling

Node Config: Active-Passive
Failure Detection: Heartbeat
Failover: Promotion of database
Replica

DB Repl. Config:
Master-Slave
Repl. Mode: Asynchronous

Sequence Diagram
Loss of availability of EC2 Authorization Server during registration

Loss of availability of EC2 Authorization Server during hosted login

Loss of availability of EC2 Authorization Server during bank SSO

Our EC2 Authorization Server consists of hosting all of our functionalities, MFA registration,
hosted login, bank SSO and the web server. Upon the loss of availability of the EC2
Authorization Server, the application load balancer will route traffic automatically to another
functional EC2 instance. Through the health check, unhealthy instances will be terminated
and would automatically replace the non-functional instance.

Security View
No Asset/Asset Potential Threat / Vulnerability

pair
Possible Mitigation Controls

1 Servers DDos Attack/Exploit Web server
● Server outages and monetary

loss
● Unavailability of

websites/servers
● CORS attack

Implementation of AWS WAF

2 Data in
transit

MITM Attack/Exploit network
between User and Server
● Hijack user credentials
● Post invalid data

Enable SSL and HTTPS for the
entire application

3 Data in
database

SQL Injection/ Exploit APIs in
Web Server
● Leak/tamper user password
● Change records in user table

1. Hash user passwords
2. Input validation (Not

implemented)
3. Disable public access to

database
4. Encrypt data with KMS

Personal Information

Customer information in Amazon RDS is logically segregated so users and customers will
not be able to access resources not assigned to them. Amazon RDS encrypts data with the
keys that we manage with AWS Key Management Service (KMS). All data including the
replicas, backups and snapshots are encrypted at rest. To effectively remove user PII, we will
implement a “Delete Account” feature so that users will be able to completely delete their
information from their database.

Systems Security

AWS Cloudwatch will track the average CPU utilisation of the EC2 instance. Any anomaly
will create a log in AWS Cloudwatch Events which can in turn trigger a message to AWS
SNS to send notifications to the relevant stakeholders.

With AWS IAM, we will employ the principle of least privilege and ensure that users only
get permissions for what they require, nothing more. With AWS WAF, our application is
protected from common web exploits and bots as we can filter traffic based on rules that we
have created. Using AWS VPC, we will create public and private subnets to ensure that
instances in the private subnets are not accessible to the internet. With Amazon API Gateway,
CORS protection is implemented, and requests are restricted to only valid clients/sources.

IAM Roles

To restrict and protect access to AWS sources and services, 3 Here are some of the main IAM

roles and their policies we implemented:

Role AWSServiceRoleForRDS

Assumed By RDS

Policy Permissions

AmazonRDSServiceRolePolicy Allow write to CloudWatch, list and write to
CloudWatch Logs.
Allow list and write to EC2 instances
Allow read and write to Kinesis
Allow write to RDS and SNS

Role CodeDeployRole

Assumed By EC2 Instances in g2t8-ec2-code-deploy

Policy Permissions

AWSCodeDeployRole Allow read and write to CloudWatch
Allow list and write to EC2
Allow list and write to EC2 Auto Scaling
Allow list and write to ELB
Allow read to ELB v2
Allow read and write to Resource Group
Tagging
Allow write to SNS

Role codebuild-g2t8-github-connection-service-r
ole

Assumed By g2t8-builder

Policy Permissions

CodeBuildBasePolicy-g2t8-builder-ap-south
east-1

Allow write to CloudWatch Logs
Allow write to CodeBuild
Allow read and Write to S3
Allow read from Secrets Manager

Role AWSCodePipelineServiceRole-ap-southeast
-1-g2t8-code-pipeline

Assumed By g2t8-code-pipeline

Policy Permissions

AWSCodePipelineServiceRole-ap-southeast
-1-g2t8-code-pipeline

Policy used in trust relationship with
CodePipeline

OWASP Zap
Usage of OWASP Zap allows us to determine the vulnerabilities of our website, thus
allowing us to improve our website security. When CAPTCHA in WAF is enabled, OWASP
Zap is unable to attack the url:

Hence, we disabled the CAPTCHA to gain more insights on our security from OWASP Zap.
The final OWASP Zap results are shown below when CAPTCHA is disabled in WAF:

Our website proves to be a relatively safe website, having no major high priority issues. A
total of 2 medium risk vulnerabilities are the absentees of Content Security Policy and
anti-clickjacking.

Content Security Policy helps to detect and mitigate certain types of attacks, including Cross
Site Scripting and data injection attacks. Even though the CSP feature is not implemented,
our AWS WAF feature will be used in place to prevent such attacks from happening. The
AWS WAF helps to monitor the HTTP requests, exploiting vulnerabilities in the application
layer.

Similarly for anti-clickjacking, AWS WAF helps to identify if the requests hitting the instance
are bot or human. By enabling the CAPTCHA, it helps to prevent brute force attacks,
credential stuffing, web scraping, and spam requests to servers.

Performance View
No Description of the Strategy Justification

1 Auto Scaling group We are expecting high traffic during specific times of
the day. To cope with the additional demand, we rely
on the Auto Scaling group to adjust the capacity.

2 Route read requests to
database replica

To mitigate the computational workload on the
primary database, read requests are routed to the
replica instead.

3 Caching in Cloudfront Static content will be retrieved from the closest point
of presence. This allows for lower latency when
serving static content

Our authorization servers are hosted on EC2 instances organised into separate autoscaling
groups. Instances are scaled across multiple AZs, in response to the computational workload,
maximising capacity. The autoscaling group has an autoscaling policy in place that will
dynamically resize the autoscaling group based on the average CPU utilisation for the EC2
instances.

Website Screenshots
Web
Captcha

Login

Register

User
profile
page

Admin
login
with
only
read role

Admin
login
with
read and
write
roles

